Non-invasive Hemodynamic Assessment for ACS Risk

Bon-Kwon Koo, MD, PhD

Invasive physiologic assessment is strongly recommended.....

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

	Class ^a	Level⁵
FFR-guided PCI is recommended for detection of ischaemia-related lesion(s) when objective evidence of vessel-related ischaemia is not available.	I	А
DES ^d are recommended for reduction of rectonosis/re occlusion, if no contraindication to extended DAPT	1	Δ

But, requires invasive procedure and expensive (>1,000 USD)..... cannot provide 3D anatomical information....

How to assess hemodynamics from static images?

Seoul National University Hospital Cardiovascular Center

How to assess hemodynamics from static images?

Seoul National University Hospital Cardiovascular Center

Hybrid imaging: CCTA + SPECT/PET

Stress CT perfusion imaging

Computational Fluid Dynamics (CFD)

- Computational fluid dynamics (CFD) quantifies fluid pressure and velocity, based on physical laws of mass conservation and momentum balance.
- CFD is widely used in the aerospace and automotive industries for design and testing.

CFD in simple and idealized coronary models

Williams & Koo, et al. J Appl Physiol 2010

Patient Specific CFD models

SNUH Seoul National University Hospital Cardiovascular Center

Patient-specific non-invasive FFR using CT & CFD

-Effect of adenosine on microcirculation

Koo BK. EuroPCR 2011

Establishing the clinical relevance.....

DISCOVER-FLOW

5 center FIH clinical trial

N=103 patients

Published in JACC

• DeFACTO

17 center clinical trial

N=252 patients

Published in JAMA

• NXT

10 center clinical trial

N=251 patients

Published in JACC

Bon-Kwon Koo, MD, PHD,* Andrejs Erglis, MD, PHD,† Joon-Hyung Doh, MD, PHD,‡ David V. Daniels, MD,§ Sanda Jegere, MD, Hyo-Soo Kim, MD, PHD,* Allison Dunning, MD,¶ Tony DeFrance, MD,# Alexandra Lansky, MD,** Jonathan Leipsic, BSC, MD,†† James K. Min, MD‡‡ Seoul and Goyang, South Korea; Riga, Latvia; Palo Alto, San Francisco, and Los Angeles, California; New York, New York; New Haven, Connecticut; and Vancouver, British Columbia, Canada

	Sens	Specif	PPV	NPV	Accuracy
DISCOVER -FLOW	93%	82%	85%	91%	87%
DeFACTO	90%	54%	67%	84%	73%
NXT	86%	79%	65%	92%	81%
	90%	72%	72%	89%	80%

Ischemia is bad, but plaque rupture is fatal!

SNUH Seoul National University Hospital Cardiovascular Center

Vulnerability?

Plaque characteristics

Positive remodeling, posterior attenuation, lipid, cap thickness, TcFA, calcium, napkin ring, low density,.....

<image>

Hemodynamics

- Pressure
 - Pressure difference
 - Pressure gradient
 - · Pressure recovery
 - FFR
- Flow velocity
- Flow rate
- Shear rate
- Wall shear stress
- Traction
- · Oscillatory shear index
- · Particle residence time
- Turbulent kinetic energy,

Non-invasive measurement of hemodynamics

Coronary CT angiography + Computational fluid dynamics

Cauchy Stress Tensor $T = -pI + \mu((\nabla v) + (\nabla v)^T)$ Traction vector $t = Tn = -pn + \mu((\nabla v) + (\nabla v)^T) n$

Wall Shear Stress (WSS) $\tau_{mean} = \left| \frac{1}{T} \int_{0}^{T} t_{s} dt \right|$ $t_{s} = t - (t \cdot n)n$

Oscillatory Shear Index (OSI)

$$OSI = \frac{1}{2} \left(1 - \frac{\left| \frac{1}{T} \int_0^T t_s dt \right|}{\frac{1}{T} \int_0^T \left| t_s \right| dt} \right)$$

Particle Residence Time, Turbulent Kinetic Energy,

> Koo BK & HeartFlow, inc Total plaque force project since 2013

Total Plaque Force Project

- To investigate the clinical relevance of hemodynamic force acting on the plaque
 - Project launching: Mar 12, 2013
- Projects
 - # 1: Validation of concept/methodology, role of WSS: *Heart 2016*
 - # 2: Establishment of novel indices: APS and RG: JACC imaging 2015
 - # 3: Validation of APS and RG using IVUS data: JACC imaging 2017
 - # 4: Clinical validation of total plaque stress analysis: JACC imaging 2018
 - # 5, 6, 7.....

SNUH Seoul National University Hospital Cardiovascular Center

From Simple Idealized Models

SNUH Seoul National University Hospital Cardiovascular Center Choi G & Lee JM, Koo BK, et al. JACC imaging 2015

To Patient-specific Models

SNUH® Seoul National University Hospital Cardiovascular Center

Non-invasive hemodynamic metrics : FFR_{CT} , ΔFFR_{CT} , WSS, APS.....

: Just another toy or Clinically relevant index?

How can we identify the culprit (vulnerable) M/69, Asymptomatic M/70, Non-ST elevation MI

116 days later, the patient visited ER.

SNUH

Seoul National University Hospital Cardiovascular Center

How can we identify the culprit lesion for future ACS?

FFR_{CT}: 0.87

Current Paradigm

Stenosis severity Adverse plaque characteristics

Non-invasive hemodynamic assessment

 ΔFFR_{CT} = proximal FFR_{CT} - distal FFR_{CT} = $\frac{P_X}{P_{Aorta}} - \frac{P_Y}{P_{Aorta}} = \frac{\Delta P}{P_{Aorta}}$

where X and Y represent the lesion start and ending points, respectively, and P represents pressure.

$$WSS_{lesion} = \frac{1}{A} \int_{X}^{Y} \left\| \overline{WSS} \right\| dA$$

where A represents the surface area of defined lesion from X and Y $% \left({{\mathbf{Y}_{{\rm{A}}}} \right)$

Axial Plaque Stress_{lesion}
$$| = \left| \frac{1}{A} \int_{X}^{Y} (\vec{t} \cdot \vec{c}) dA \right|$$

where $\vec{t} \cdot \vec{c}$ represents the dot product of the traction vector (\vec{t}) and tangential vector of vessel centerline (\vec{c}).

De Bruyne B, et al. N Engl J Med 2014:371:1208-17 Samady H, et al. Circulation 2011;124:779 Park JB, et al. Heart 2016;102:1655-61 Choi G & Lee JM, et al. JACC Cardiovasc Imaging 2015;8:1156-66 Lee JM, et al. JACC Cardiovasc Imaging 2016

Seoul National University Hospital Cardiovascular Center

EMERALD study

<u>Exploring the ME</u>chanism of the Plaque <u>R</u>upture in <u>A</u>cute Coronary Syndrome using Coronary CT Angiography and Computationa<u>L</u> Fluid <u>D</u>ynamics

EMERALD study

<u>Exploring the ME</u>chanism of the Plaque <u>R</u>upture in <u>A</u>cute Coronary Syndrome using Coronary CT Angiography and Computationa<u>L</u> Fluid <u>D</u>ynamics

SNUH

Characteristics of the Patients and Lesions

Patients (n = 72)	
Age, years	69·9 ± 12·7
Male	54 (75·0%)
Median interval between cCTA and ACS, days	338·0 (161·5-535·0)
Cardiovascular Risk Factors	
Hypertension	46 (63·9%)
Diabetes mellitus	37 (51·4%)
Hypercholesterolemia	35 (48·6%)
Clinical Presentation	
Myocardial infarction	67 (93·0%)
NSTEMI	41 (56·9%)
STEMI	26 (36·1%)
Unstable angina	5 (6·9%)

Lesion characteristics (n = 216)	
Lesion location	
Left main to LAD	87 (40·3%)
LCX / RCA	48 (22·2%) / 81 (37·5%)
Culprit vessel (n=66)	
Left main to LAD	39 (59·1%)
LCX / RCA	9 (13·6%) / 18 (27·3%)
Lesion profile	
Minimal lumen area, mm²	2·75 ± 1·59
Diameter stenosis, %	46·9 ± 16·1
Distance from ostium to MLA, mm	47·1 ± 22·6
Lesion length, mm	17·6 ± 7·4
FFR _{CT}	0·77 ± 0·15

EMERALD study: Culprit vs. Non-culprit

Cut-off Value for Adverse Hemodynamic Characteristics

Wall Shear Stress (dyn/cm²): 154.7

Axial Plaque Stress (dyn/cm²): 1606.6

How can we identify the culprit lesion for future ACS?

Lee JM & Choi GW, Koo BK..... JACC imaging 2018

SNUH Seoul National University Hospital Cardiovascular Center

Plaque characteristics (APC), Hemodynamic characteristics (AHC) and Risk for the culprit of future ACS

Lee JM & Choi GW, Koo BK..... JACC imaging 2018

Prediction of ACS risk

Prediction Model	C-index	Difference with Prev. Model	P value	NRI	P value	IDI	P value
Model 1	0.709						
Model 2	0.747	0.038	0.006	0.355	0.001	0.671	<0.001
Model 3	0.789	0.025	0.014	0.287	0.047	0.368	<0.001

SNUH

Information gain of each parameter

Contribution in <u>Non-Obstructive lesions</u>

Information gain

Park JS, Lee JM, Koo BK (Unpublished data)

Contribution of different index in Non-Obstructive lesions

0.725	1			Model 7 : Plaq	ue Volume + Lo	w-attenuation p	laque + ΔFFR _c
0.703		μ	.	Model 6 : Low-	attenuation pla	que + ΔFFR _{cτ}	
0.691				Model 5 : Plaq	ue Volume + ΔF	FR _{CT}	
0.644	4			Model 4 : Plaq	ue Volume + Lo	w-attenuation p	laque
0.654				Model 3 : ΔFFI	R _{ct}		
0.590				Model 2 : Low-	attenuation pla	que	
0.590				Model 1 : Plaq	ue Volume		
0.550 0.	600 0.650	0.700	0.750				
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
AUC	0.59	0.59	0.65	0.64	0.69	0.70	0.73
P for difference	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
Model 1		0.92	<0.001	<0.001	<0.001	<0.001	<0.001
Model 2			<0.001	<0.001	<0.001	<0.001	<0.001
Model 3				<0.001	<0.001	<0.001	<0.001
Model 4					<0.001	<0.001	<0.001
Model 5						<0.001	<0.001
Model 6							<0.001

Park JS, Lee JM, Koo BK (Unpublished data)

EMERALD II study

<u>Exploring the ME</u>chanism of Plaque <u>R</u>upture in <u>A</u>cute Coronary Syndrome using Coronary CT Angiography and Computationa<u>L</u> Fluid <u>D</u>ynamics II

• PI: Bon-Kwon Koo, MD, PhD

Conclusion

- Non-invasive hemodynamic assessment enhanced the identification of vulnerable plaques that subsequently caused ACS.
- Application of this novel technology in daily practice can improve the prediction of ACS risk and may help guide optimal treatment for high risk patients.
- The EMERALD II study will confirm the value of non-invasive hemodynamics in ACS risk assessment.

